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Abstract 

General recursive techniques are used to determine recurrence relations ~ for the 
characteristic polynomials of graphs associated with various ring compounds. 

1. Introduction 

This note may be seen as a supplement to the recent paper [1] which reviews 
means of  calculating the characteristic polynomial of  a chemical graph. The purpose 
is to demonstrate the use of a recursive method for evaluating the characteristic 
polynomial q~c(x) of an arbitrary multigraph G without recourse to either (a) the 
matching polynomial of  G, or (b) the identification of  all cycles or paths in G which 
contain a specified vertex or edge. The algorithm concerned is applied in section 3 
to a type of  cactus graph closely related to the spirographs considered in [2]. There, 
the author obtains recurrence relations for the characteristic polynomials of  linear 
spirographs constructed from 3-cycles or 6-cycles: these are of  the type illustrated 
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Fig. 1. A spirograph constructed from k-cycles. 

in fig. 1, where k _> 3, 1 < a _< [k/2] and labels indicate the number of  edges in a 
path. The relations obtained in [2] are improved in [3], where results for further 
values of k and a are obtained. 
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Although it is asserted in [2] that "there are no general recursive procedures 
for all graphs", some such procedures are discussed in [1], while others have 
appeared in the mathematical  literature. Among the first to be formulated was the 
following result of  Schwenk [4, theorem 2]; others are given l~low and in [5, 
theorem 1], [6, theorem 2]. Here, G - v denotes the graph obtained from G by deleting 
v and all edges containing v, notation which is extended in the natural way to deal 
with deleted sets of  vertices. 

PROPOSITION 1 

Let v be a vertex of  the graph G and let C be the collection of all cycles in 
G which contain v. Then, 

Oc(x) = x~c-v(x)-  ~, ~c_,.-v(x)-2 ~, ~c-v~z~(x), 
u - v  Z~C 

where Y~,_ v denotes the sum over all vertices u adjacent to v. [] 

This result is proved using Sachs' interpretation of the coefficients of a 
characteristic polynomial  in terms of  a graph's cyclic structure (cf. [1, section 4] 
and [7, theorem 1.3]). As noted in [8], one consequence is the following result 
which justifies the "method of pruning spiral vertices" used in [2]. 

PROPOSITION 2 

Let G be a graph obtained from disjoint graphs H, K by amalgamating vertex 
u of H with vertex v of  K. Then, 

~c (x) = ~u(x)~K-o (x) + ~ u - .  ( x ) ~  (x) - x4~.- .  (x)~K-o (x). 

P r o o f  

[4, corollary 2b]. An alternative derivation is given in [9, remark 1.6]. [] 

In section 2, we use proposition 2 to deal in general with the characteristic 
polynomials  of spirographs of the type shown in fig. 1. The means of  reducing 
hybrid recurrence relations to pure recurrence relations is essentially the "operator 
technique" of  Hosoya and Ohkami [10]. They obtained their initial relations by 
repeated application of  a reduction formula equivalent to the following result of  
Schwenk [4, theorem 3]; this is an analogue of  proposition 1 for the graph G - u v  

obtained from G by deleting the edge u v .  
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PROPOSITION 3 

Let u v  be an edge of the graph G, and let C be the collection of all cycles 
in G which contain uv.  Then, 

¢~a (x) = ¢ o -  .v  (x) - C G - . -  o (X) -- 2 ~ 0 0 -  VCZ) (X). 
ZeC 

[]  

Hosoya and Ohkami found recun~nce relations for the characteristic polynomials 
of certain polyhex graphs associated with benzene rings (cf. [11, section 5.13]), in 
particular a fourth-order relation for those of the type illustrated in fig. 2. The 

Fig. 2. A simple type of polyhex graph. 

eigenvalues of these graphs (i.e. the roots of their characteristic polynomials) had 
been found some thirty-five years earlier by Coulson [12] and Rutherford [13]. Such 
graphs are formed from hexagons by amalgamating edges, whereas spirographs are 
formed from cycles by amalgamating vertices. An analogue of proposition 2 for the 
amalgamation of an edge is given in [14, proposition 2.4] as an application of the 
following algorithm [9, theorem 1.3]. 

PROPOSITION 4 (The deletion-contraction algorithm) 

Let G be a finite multigraph with at least three vertices, let u, v be distinct 
vertices of G, and let m be the number of edges between u and v. Let G - [uv] be 
the multigraph obtained by deleting all m edges between u and v, and let G* be the 
multigraph obtained from G -  [uv] by amalgamating u and v. Then, 

Co(x) = ~Oc-[.vl(x) + m(~c" (x)  + m ( x  - m ) (Pc - . . - v  (x)  - m(~c-~, (x)  - m ( ~ c - v  (x) .  []  

Unlike propositions 1 and 3, the deletion-contraction algorithm expresses 
dpc(x ) in terms of  characteristic polynomials of local  modifications of G (each with 
fewer edges than G when m > 0). Proposition 4 may be applied directly to the 
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polyhex graph of fig. 2, but is seen to best advantage when the collection C of  
cycles specified in propositions 1 or 3 is unduly large. Such a situation arises in 
respect of  the graph G~ obtained from the spirograph G, of  fig. 3 by amalgamating 
vertices u and v. Thus, G,~ is a cyclic chain of triangles of interest in relation to 

\ 
\ 

U 

Fig. 3. A linear spirograph G~ constructed from n triangles. 

spirocyclopropane compounds (where in practice n is even and n -> 10). Note that 
in G~, the vertices of  degree 4 are no longer cutvertices and so proposition 2 is of  
no use in this context. In section 3, we use the delet ion-contract ion algorithm, 
together with the operator technique, to obtain a third-order recurrence relation for 
the characteristic polynomial of G~. 

Finally, we note that G~, has much greater symmetry than G,; indeed, its auto- 
morphism group has only two orbits and this makes it possible to realize the 
characteristic polynomial of  G,~ as a product of  quadratic factors, as described in [ 15]. 
This can, however, be achieved directly once we note that with an appropriate 
labelling of vertices, G~ has an adjacency matrix of the form 

l + p - 1  

where B is the adjacency matrix of an n-cycle and P is a permutation matrix 
such that P + p - l =  B. Since BP = PB, we have d e t ( x l - A ) =  d e t { x l ( x l - B )  

- (I + P)(I + p-l)} = det{(x 2 _ 2)1 - (x + 1)B}. In particular, - 1 is not an eigenvalue 
of  A and so all eigenvalues ~, of  G~ are obtained by setting ()~2_ 2)/0. + 1) equal 
to an eigenvalue of B. The characteristic polynomial of  G,~ is now realized 

?1 
a s  l'Ij= l { x 2  --  2 a i x -  2(1 + ay)}, where aj = cos(2lrj/n). 

2. Linear spirographs 

For n > 1, let X~ 'a (or X n when k and a are fixed) denote the graph constructed 
from n k-cycles, as illustrated in fig. 1, where k > 3 and 1 < a < [k/2]. Let Yn be 
the graph obtained from X, by deleting the vertex shown in black in the figure; and 
let X o denote the trivial graph, Yo the empty graph. Additional notation is as follows: 
C,, (m > 3) denotes an m-cycle; P,,, denotes an m-vertex path; the characteristic 
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polynomial of  the empty graph is to be interpreted as 1; and for clarity of  exposition, 
a graph is identified with its characteristic polynomial. 

We now apply proposition 2 to X n, regarding Xn as the graph obtained by 
amalgamating a vertex of  Ck with an appropriate vertex of X~_ 1. We obtain 

Xn = P~:_~Xn_I + CkYn_l - x P k _ l r n - 1 .  (2.1) 

If we deal similarly with Y,, then we obtain 

Y, = P a _ l P k _ a _ i X , _ l  + P , _ I Y , _ I  - x P a _ I P k _ ~ _ I Y ~ _ I .  (2.2) 

Equations (2.1) and (2.2) may be written in the form: 

Yn Y~-I where M = l_Pa- l Pk-a-1  P t -  I -- XPa- I Pk-a-1  

NOW M satisfies its characteristic polynomial, that is, 

M 2 - ( 2 P k _ I - x P ~ _ I P k _ ~ _ 1 ) M  + (P2_ 1 - C k P a _ l P k _ a _ l ) l  = 0, (2.4) 

and so eq. (2.3) yields a second-order recurrence relation satisfied by both X~ and 
Y,. In particular, we deduce the following result from eq. (2.4). 

PROPOSITION 5 

For the graph X, of  fig. 1, we have 

X n = (2pk_ 1 - x P a _ l P k _ a _ l ) X , _  1 + ( C k P a _ l P k _ a _ l  - p 2 _ l ) X n _  2 (n >_. 2), 

where X 0 = x and X 1 = C~. [] 

Characteristic polynomials of  paths and cycles have simple expressions in 
terms of  Chebyshev polynomials [7, p. 73] and these can make for some minor 
simplifications which we do not pursue here. The resulting recurrence relations for 
all X~ '~ with 3 < k < 6 are given in [3, table 1]. Here, we note the results in just 
three cases: one is required in section 3, the second was derived incorrectly in [2], 
and the third is stated wrongly in [3]. 

PROPOSITION 6 

(i) X 3,1 (x 2 3 1 2 3,1 = - 2 ) X n ' _  1 - ( x + l )  X,,_ 2 (n_>2), 

where X 3 , l = x  andX~ ' l = x 3 - 3 x - 2 .  
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(ii) X 4'2 (x 3 4x)Xn4'21 . 2 . .42  = - _ - '+x  ~tn'" 2 ( n > 2 ) ,  

where X 4'2 = x a n d X  4'2 = x 4 - 4 x  2. 

(iii) X 6'3 = ( x 5 - 6 x  3 + 5x)X6'_31 - ( 4 x 4 - 8 x  2 +4)X6'_32 

where X 6'3 = x andX 6'3 = x 6 - 6 x 4  + 9 x 2 - 4 .  

(n > 2) ,  

[] 

We note that for the graph X 4'2, the intermediate working in [2] is 
incorrect: eq. (4) there should read h '  = ~3 _ 2~ and eq. (7) should read det(A) 
= (X3-2A. )h -2A2h ' ,  with consequent amendments to eqs. (9), (10) and (13). 
Notwithstanding these errors, the characteristic polynomials obtained are correct, as 
can be seen by interpreting (h~, h i)  in [2] as (X~, ~1 x-iX,,+ ~Y,,) instead of  (X~, Y~) 
in the case (k, a) = (4, 2). 

3. S o m e  m o r e  r e c u r r e n c e  re la t ions  

In this section, we show how the delet ion-contract ion algorithm may be used 
to obtain directly a recurrence relation for the characteristic polynomials of  the 
graphs G~ defined in section 1. The subgraphs of  G~ which arise, together with an 
associated multigraph D n, are illustrated in fig. 4 (where only a segment of  each 
graph is shown). Here, n > 2, and G 2 is a multigraph with a double edge. 

On applying proposition 4 to G~, D n and L n, with u, v the vertices shown in 
black, we obtain (for n > 3): 

G.* = Hn +Dn + ( x -  1)En - L n  _ Q n ,  

Dn = Gn- 1 + 2G*_ 1 + 2(x - 2 )Qn-  1 - 4En, 

Ln = Gn-1 + G ~ - I  + ( x -  1)Qn-1 -2En .  

(3.1) 

(3.2) 

(3.3) 

Each of  the graphs H~, E~, Q,, has a pendant vertex (shown in black) and accordingly 
we may invoke the following result: if the graph G '  is obtained from a graph G by 
adding a pendant edge at vertex v, then 

= x ¢ c ( x ) -   c-o (x). (3.4) 

This is a special case of  proposition 2, but it also has a straightforward direct proof. 
On applying eq. (3.4) to H n, E,,, Q,,, we obtain (for n > 3): 
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1IlL 

Q, 

GI~ -- I 

Fig. 4. Segments of G~ and associated graphs. 

Hn = xLn - En, (3.5) 

En = x G n - 2  - E n - 1 ,  (3.6) 

Qn = xEn - Q n - 1 .  (3.7) 

Finally, since Gn is the graph X3~ '1 of proposition 6(i), we have (for n > 3): 

G. = (x 2 -  2)Gn-1 - ( x +  1)2Gn_2. (3.8) 

We now have seven independent equations ((3.1) to (3.3) and (3.5) to (3.8)) 
relating the characteristic polynomials of the seven multigraphs derived from G~. 
Accordingly, we may now apply the operator technique of [10]: we find that the 
shift operator O satisfies 
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(O + 1)2(O - (x + 1)} {O 2 -  (x 2 -  2 ) 0  + (x + 1) 2} = 0. 

In particular, since OG~ = G2+ 1, we have for n > 7: 

G *  = (x  2 + x - 3 ) G * _  1 - (x  3 - 2 x  + 2 ) G * - 2  - (x  3 - 4 x  - 2 ) G * - 3  

3 * + (x + l)(xZ + 3x + 3)G~_4 +(x + l) Gn-5. (3.9) 

We define G I as x 2 - 2x - 4, so that (3.9) holds for all n > 6. For subsequent reference, 
the coefficients in the characteristic polynomials ~.kakx k of G* (n = 1 to 8) are listed 
in table 1. (The data for the cases n = 2, 3, 4, 5, 6 represent the initial conditions 
for (3.9) and are found directly.) 

We can now go on to show that G] satisfies the third-order recurrence relation 
equivalent to the equation 

{ O  -- (X + l ) }  { 0  2 -- (X 2 -- 2 ) 0  + (X + 1)2}G~, = 0.  (3.10) 

Equation (3.10) was derived in [3, section 3.1] by a method which requires 
both (a) the matching polynomial, and (b) identification of  all cycles containing a 
specified edge. 

PROPOSITION 7 

We have 

G2 = (x  a + x - 1 )G,7_  1 - ( x  3 + 2 x  2 - 1 ) G 2 - e  + ( x  + 1 )3G ,7_3  

where 
* X 2 * 4 _ G1 = - 2 x - 4 ,  G2 = x  - S x  ~ 8x 

and 
G~ = x 6 - 9x 4 - 8x 3 + 9x 2 + 6x - 4. 

(n  _> 4 ) ,  

Proof 

From table 1, this third-order relation holds for n = 4, 5, 6, 7, 8. For n > 9, 
the result follows from (3.9) by induction on n. [~ 
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